Month End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated MLS-C01 Exam Questions and Answers by santino

Page: 22 / 23

Amazon Web Services MLS-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Specialty
Questions: 322 Q&A's Shared By: santino
Question 88

A data scientist obtains a tabular dataset that contains 150 correlated features with different ranges to build a regression model. The data scientist needs to achieve more efficient model training by implementing a solution that minimizes impact on the model's performance. The data scientist decides to perform a principal component analysis (PCA) preprocessing step to reduce the number of features to a smaller set of independent features before the data scientist uses the new features in the regression model.

Which preprocessing step will meet these requirements?

Options:

A.

Use the Amazon SageMaker built-in algorithm for PCA on the dataset to transform the data

B.

Load the data into Amazon SageMaker Data Wrangler. Scale the data with a Min Max Scaler transformation step Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data.

C.

Reduce the dimensionality of the dataset by removing the features that have the highest correlation Load the data into Amazon SageMaker Data Wrangler Perform a Standard Scaler transformation step to scale the data Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data

D.

Reduce the dimensionality of the dataset by removing the features that have the lowest correlation. Load the data into Amazon SageMaker Data Wrangler. Perform a Min Max Scaler transformation step to scale the data. Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data.

Discussion
Inaya
Passed the exam. questions are valid. The customer support is top-notch. They were quick to respond to any questions I had and provided me with all the information I needed.
Cillian Oct 20, 2024
That's a big plus. I've used other dump providers in the past and the customer support was often lacking.
Sam
Can I get help from these dumps and their support team for preparing my exam?
Audrey Aug 29, 2024
Definitely, you won't regret it. They've helped so many people pass their exams and I'm sure they'll help you too. Good luck with your studies!
Teddie
yes, I passed my exam with wonderful score, Accurate and valid dumps.
Isla-Rose Aug 18, 2024
Absolutely! The questions in the dumps were almost identical to the ones that appeared in the actual exam. I was able to answer almost all of them correctly.
Peyton
Hey guys. Guess what? I passed my exam. Thanks a lot Cramkey, your provided information was relevant and reliable.
Coby Sep 6, 2024
Thanks for sharing your experience. I think I'll give Cramkey a try for my next exam.
Question 89

A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.

Which model describes the underlying data in this situation?

Options:

A.

A naive Bayesian model, since the features are all conditionally independent.

B.

A full Bayesian network, since the features are all conditionally independent.

C.

A naive Bayesian model, since some of the features are statistically dependent.

D.

A full Bayesian network, since some of the features are statistically dependent.

Discussion
Question 90

An obtain relator collects the following data on customer orders: demographics, behaviors, location, shipment progress, and delivery time. A data scientist joins all the collected datasets. The result is a single dataset that includes 980 variables.

The data scientist must develop a machine learning (ML) model to identify groups of customers who are likely to respond to a marketing campaign.

Which combination of algorithms should the data scientist use to meet this requirement? (Select TWO.)

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

K-means

C.

Se mantic feg mentation

D.

Principal component analysis (PCA)

E.

Factorization machines (FM)

Discussion
Question 91

A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.

B.

Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.

C.

Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a model Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.

D.

Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.

Discussion
Page: 22 / 23
Title
Questions
Posted

MLS-C01
PDF

$36.75  $104.99

MLS-C01 Testing Engine

$43.75  $124.99

MLS-C01 PDF + Testing Engine

$57.75  $164.99