Big Halloween Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated MLS-C01 Exam Questions and Answers by zayaan

Page: 12 / 24

Amazon Web Services MLS-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Specialty
Questions: 330 Q&A's Shared By: zayaan
Question 48

A data scientist uses an Amazon SageMaker notebook instance to conduct data exploration and analysis. This requires certain Python packages that are not natively available on Amazon SageMaker to be installed on the notebook instance.

How can a machine learning specialist ensure that required packages are automatically available on the notebook instance for the data scientist to use?

Options:

A.

Install AWS Systems Manager Agent on the underlying Amazon EC2 instance and use Systems Manager Automation to execute the package installation commands.

B.

Create a Jupyter notebook file (.ipynb) with cells containing the package installation commands to execute and place the file under the /etc/init directory of each Amazon SageMaker notebook instance.

C.

Use the conda package manager from within the Jupyter notebook console to apply the necessary conda packages to the default kernel of the notebook.

D.

Create an Amazon SageMaker lifecycle configuration with package installation commands and assign the lifecycle configuration to the notebook instance.

Discussion
Alessia
Amazing Dumps. Found almost all questions in actual exam whih I prepared from these valuable dumps. Recommended!!!!
Belle Sep 18, 2025
That's impressive. I've been struggling with finding good study material for my certification. Maybe I should give Cramkey Dumps a try.
Addison
Want to tell everybody through this platform that I passed my exam with excellent score. All credit goes to Cramkey Exam Dumps.
Libby Sep 5, 2025
That's good to know. I might check it out for my next IT certification exam. Thanks for the info.
Erik
Hey, I have passed my exam using Cramkey Dumps?
Freyja Aug 31, 2025
Really, what are they? All come in your pool? Please give me more details, I am going to have access their subscription. Please brother, give me more details.
Ivan
I tried these dumps for my recent certification exam and I found it pretty helpful.
Elis Sep 18, 2025
Agree!!! The questions in the dumps were quite similar to what came up in the actual exam. It gave me a good idea of the types of questions to expect and helped me revise efficiently.
Question 49

A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.

A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.

Which labeling approach will help the company improve this model?

Options:

A.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a private workforce. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

B.

Use an Amazon SageMaker Ground Truth object detection labeling task. Use Amazon Mechanical Turk as the labeling workforce.

C.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a workforce with a third-party AWS Marketplace vendor. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

D.

Use an Amazon SageMaker Ground Truth semantic segmentation labeling task. Use a private workforce as the labeling workforce.

Discussion
Question 50

A Machine Learning Specialist was given a dataset consisting of unlabeled data The Specialist must create a model that can help the team classify the data into different buckets What model should be used to complete this work?

Options:

A.

K-means clustering

B.

Random Cut Forest (RCF)

C.

XGBoost

D.

BlazingText

Discussion
Question 51

A Machine Learning Specialist previously trained a logistic regression model using scikit-learn on a local

machine, and the Specialist now wants to deploy it to production for inference only.

What steps should be taken to ensure Amazon SageMaker can host a model that was trained locally?

Options:

A.

Build the Docker image with the inference code. Tag the Docker image with the registry hostname andupload it to Amazon ECR.

B.

Serialize the trained model so the format is compressed for deployment. Tag the Docker image with theregistry hostname and upload it to Amazon S3.

C.

Serialize the trained model so the format is compressed for deployment. Build the image and upload it toDocker Hub.

D.

Build the Docker image with the inference code. Configure Docker Hub and upload the image to Amazon ECR.

Discussion
Page: 12 / 24
Title
Questions
Posted

MLS-C01
PDF

$36.75  $104.99

MLS-C01 Testing Engine

$43.75  $124.99

MLS-C01 PDF + Testing Engine

$57.75  $164.99