Exam Name: | AWS Certified Machine Learning - Specialty | ||
Exam Code: | MLS-C01 Dumps | ||
Vendor: | Amazon Web Services | Certification: | AWS Certified Specialty |
Questions: | 330 Q&A's | Shared By: | rueben |
A finance company has collected stock return data for 5.000 publicly traded companies. A financial analyst has a dataset that contains 2.000 attributes for each company. The financial analyst wants to use Amazon SageMaker to identify the top 15 attributes that are most valuable to predict future stock returns.
Which solution will meet these requirements with the LEAST operational overhead?
A Machine Learning Specialist is given a structured dataset on the shopping habits of a company’s customer
base. The dataset contains thousands of columns of data and hundreds of numerical columns for each
customer. The Specialist wants to identify whether there are natural groupings for these columns across all
customers and visualize the results as quickly as possible.
What approach should the Specialist take to accomplish these tasks?
An e commerce company wants to launch a new cloud-based product recommendation feature for its web application. Due to data localization regulations, any sensitive data must not leave its on-premises data center, and the product recommendation model must be trained and tested using nonsensitive data only. Data transfer to the cloud must use IPsec. The web application is hosted on premises with a PostgreSQL database that contains all the data. The company wants the data to be uploaded securely to Amazon S3 each day for model retraining.
How should a machine learning specialist meet these requirements?
A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.
The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.
Which solution will result in the MOST cost savings?