Weekend Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated MLS-C01 Exam Questions and Answers by shayan

Page: 23 / 24

Amazon Web Services MLS-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Specialty
Questions: 330 Q&A's Shared By: shayan
Question 92

A Machine Learning Specialist is required to build a supervised image-recognition model to identify a cat. The ML Specialist performs some tests and records the following results for a neural network-based image classifier:

Total number of images available = 1,000 Test set images = 100 (constant test set)

The ML Specialist notices that, in over 75% of the misclassified images, the cats were held upside down by their owners.

Which techniques can be used by the ML Specialist to improve this specific test error?

Options:

A.

Increase the training data by adding variation in rotation for training images.

B.

Increase the number of epochs for model training.

C.

Increase the number of layers for the neural network.

D.

Increase the dropout rate for the second-to-last layer.

Discussion
Question 93

A Machine Learning Specialist observes several performance problems with the training portion of a machine learning solution on Amazon SageMaker The solution uses a large training dataset 2 TB in size and is using the SageMaker k-means algorithm The observed issues include the unacceptable length of time it takes before the training job launches and poor I/O throughput while training the model

What should the Specialist do to address the performance issues with the current solution?

Options:

A.

Use the SageMaker batch transform feature

B.

Compress the training data into Apache Parquet format.

C.

Ensure that the input mode for the training job is set to Pipe.

D.

Copy the training dataset to an Amazon EFS volume mounted on the SageMaker instance.

Discussion
Cody
I used Cramkey Dumps to prepare and a lot of the questions on the exam were exactly what I found in their study materials.
Eric Sep 13, 2024
Really? That's great to hear! I used Cramkey Dumps too and I had the same experience. The questions were almost identical.
Robin
Cramkey is highly recommended.
Jonah Oct 16, 2024
Definitely. If you're looking for a reliable and effective study resource, look no further than Cramkey Dumps. They're simply wonderful!
Miley
Hey, I tried Cramkey Dumps for my IT certification exam. They are really awesome and helped me pass my exam with wonderful score.
Megan Aug 30, 2024
That’s great!!! I’ll definitely give it a try. Thanks!!!
Honey
I highly recommend it. They made a big difference for me and I'm sure they'll help you too. Just make sure to use them wisely and not solely rely on them. They should be used as a supplement to your regular studies.
Antoni Oct 25, 2024
Good point. Thanks for the advice. I'll definitely keep that in mind.
Anya
I must say they're considered the best dumps available and the questions are very similar to what you'll see in the actual exam. Recommended!!!
Cassius Nov 2, 2024
Yes, they offer a 100% success guarantee. And many students who have used them have reported passing their exams with flying colors.
Question 94

A car company has dealership locations in multiple cities. The company uses a machine learning (ML) recommendation system to market cars to its customers.

An ML engineer trained the ML recommendation model on a dataset that includes multiple attributes about each car. The dataset includes attributes such as car brand, car type, fuel efficiency, and price.

The ML engineer uses Amazon SageMaker Data Wrangler to analyze and visualize data. The ML engineer needs to identify the distribution of car prices for a specific type of car.

Which type of visualization should the ML engineer use to meet these requirements?

Options:

A.

Use the SageMaker Data Wrangler scatter plot visualization to inspect the relationship between the car price and type of car.

B.

Use the SageMaker Data Wrangler quick model visualization to quickly evaluate the data and produce importance scores for the car price and type of car.

C.

Use the SageMaker Data Wrangler anomaly detection visualization to identify outliers for the specific features.

D.

Use the SageMaker Data Wrangler histogram visualization to inspect the range of values for the specific feature.

Discussion
Question 95

A real-estate company is launching a new product that predicts the prices of new houses. The historical data for the properties and prices is stored in .csv format in an Amazon S3 bucket. The data has a header, some categorical fields, and some missing values. The company’s data scientists have used Python with a common open-source library to fill the missing values with zeros. The data scientists have dropped all of the categorical fields and have trained a model by using the open-source linear regression algorithm with the default parameters.

The accuracy of the predictions with the current model is below 50%. The company wants to improve the model performance and launch the new product as soon as possible.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a service-linked role for Amazon Elastic Container Service (Amazon ECS) with access to the S3 bucket. Create an ECS cluster that is based on an AWS Deep Learning Containers image. Write the code to perform the feature engineering. Train a logistic regression model for predicting the price, pointing to the bucket with the dataset. Wait for the training job to complete. Perform the inferences.

B.

Create an Amazon SageMaker notebook with a new IAM role that is associated with the notebook. Pull the dataset from the S3 bucket. Explore different combinations of feature engineering transformations, regression algorithms, and hyperparameters. Compare all the results in the notebook, and deploy the most accurate configuration in an endpoint for predictions.

C.

Create an IAM role with access to Amazon S3, Amazon SageMaker, and AWS Lambda. Create a training job with the SageMaker built-in XGBoost model pointing to the bucket with the dataset. Specify the price as the target feature. Wait for the job to complete. Load the model artifact to a Lambda function for inference on prices of new houses.

D.

Create an IAM role for Amazon SageMaker with access to the S3 bucket. Create a SageMaker AutoML job with SageMaker Autopilot pointing to the bucket with the dataset. Specify the price as the target attribute. Wait for the job to complete. Deploy the best model for predictions.

Discussion
Page: 23 / 24
Title
Questions
Posted

MLS-C01
PDF

$36.75  $104.99

MLS-C01 Testing Engine

$43.75  $124.99

MLS-C01 PDF + Testing Engine

$57.75  $164.99