New Year Special 75% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 75brite

Amazon Web Services Updated MLS-C01 Exam Questions and Answers by inara

Page: 11 / 24

Amazon Web Services MLS-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning - Specialty
Exam Code: MLS-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Specialty
Questions: 330 Q&A's Shared By: inara
Question 44

A data engineer is preparing a dataset that a retail company will use to predict the number of visitors to stores. The data engineer created an Amazon S3 bucket. The engineer subscribed the S3 bucket to an AWS Data Exchange data product for general economic indicators. The data engineer wants to join the economic indicator data to an existing table in Amazon Athena to merge with the business data. All these transformations must finish running in 30-60 minutes.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Configure the AWS Data Exchange product as a producer for an Amazon Kinesis data stream. Use an Amazon Kinesis Data Firehose delivery stream to transfer the data to Amazon S3 Run an AWS Glue job that will merge the existing business data with the Athena table. Write the result set back to Amazon S3.

B.

Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS Lambda function. Program the Lambda function to use Amazon SageMaker Data Wrangler to merge the existing business data with the Athena table. Write the result set back to Amazon S3.

C.

Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS Lambda Function Program the Lambda function to run an AWS Glue job that will merge the existing business data with the Athena table Write the results back to Amazon S3.

D.

Provision an Amazon Redshift cluster. Subscribe to the AWS Data Exchange product and use the product to create an Amazon Redshift Table Merge the data in Amazon Redshift. Write the results back to Amazon S3.

Discussion
Question 45

A company distributes an online multiple-choice survey to several thousand people. Respondents to the survey can select multiple options for each question.

A machine learning (ML) engineer needs to comprehensively represent every response from all respondents in a dataset. The ML engineer will use the dataset to train a logistic regression model.

Which solution will meet these requirements?

Options:

A.

Perform one-hot encoding on every possible option for each question of the survey.

B.

Perform binning on all the answers each respondent selected for each question.

C.

Use Amazon Mechanical Turk to create categorical labels for each set of possible responses.

D.

Use Amazon Textract to create numeric features for each set of possible responses.

Discussion
Question 46

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

Options:

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Discussion
Stefan
Thank you so much Cramkey I passed my exam today due to your highly up to date dumps.
Ocean Dec 13, 2025
Agree….Cramkey Dumps are constantly updated based on changes in the exams. They also have a team of experts who regularly review the materials to ensure their accuracy and relevance. This way, you can be sure you're studying the most up-to-date information available.
Ella-Rose
Amazing website with excellent Dumps. I passed my exam and secured excellent marks!!!
Alisha Dec 15, 2025
Extremely accurate. They constantly update their materials with the latest exam questions and answers, so you can be confident that what you're studying is up-to-date.
Reeva
Wow what a success I achieved today. Thank you so much Cramkey for amazing Dumps. All students must try it.
Amari Dec 18, 2025
Wow, that's impressive. I'll definitely keep Cramkey in mind for my next exam.
Anaya
I found so many of the same questions on the real exam that I had already seen in the Cramkey Dumps. Thank you so much for making exam so easy for me. I passed it successfully!!!
Nina Dec 25, 2025
It's true! I felt so much more confident going into the exam because I had already seen and understood the questions.
Melody
My experience with Cramkey was great! I was surprised to see that many of the questions in my exam appeared in the Cramkey dumps.
Colby Dec 6, 2025
Yes, In fact, I got a score of above 85%. And I attribute a lot of my success to Cramkey's dumps.
Question 47

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

Options:

A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

Discussion
Page: 11 / 24
Title
Questions
Posted

MLS-C01
PDF

$26.25  $104.99

MLS-C01 Testing Engine

$31.25  $124.99

MLS-C01 PDF + Testing Engine

$41.25  $164.99