Big Halloween Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Exam Questions and Answers by remy

Page: 3 / 9

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.5 – Python
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 136 Q&A's Shared By: remy
Question 12

A data scientist has identified that some records in the user profile table contain null values in any of the fields, and such records should be removed from the dataset before processing. The schema includes fields like user_id, username, date_of_birth, created_ts, etc.

The schema of the user profile table looks like this:

Questions 12

Which block of Spark code can be used to achieve this requirement?

Options:

Options:

A.

filtered_df = users_raw_df.na.drop(thresh=0)

B.

filtered_df = users_raw_df.na.drop(how='all')

C.

filtered_df = users_raw_df.na.drop(how='any')

D.

filtered_df = users_raw_df.na.drop(how='all', thresh=None)

Discussion
Question 13

39 of 55.

A Spark developer is developing a Spark application to monitor task performance across a cluster.

One requirement is to track the maximum processing time for tasks on each worker node and consolidate this information on the driver for further analysis.

Which technique should the developer use?

Options:

A.

Broadcast a variable to share the maximum time among workers.

B.

Configure the Spark UI to automatically collect maximum times.

C.

Use an RDD action like reduce() to compute the maximum time.

D.

Use an accumulator to record the maximum time on the driver.

Discussion
Question 14

An engineer wants to join two DataFrames df1 and df2 on the respective employee_id and emp_id columns:

df1: employee_id INT, name STRING

df2: emp_id INT, department STRING

The engineer uses:

result = df1.join(df2, df1.employee_id == df2.emp_id, how='inner')

What is the behaviour of the code snippet?

Options:

A.

The code fails to execute because the column names employee_id and emp_id do not match automatically

B.

The code fails to execute because it must use on='employee_id' to specify the join column explicitly

C.

The code fails to execute because PySpark does not support joining DataFrames with a different structure

D.

The code works as expected because the join condition explicitly matches employee_id from df1 with emp_id from df2

Discussion
Question 15

A Spark developer is building an app to monitor task performance. They need to track the maximum task processing time per worker node and consolidate it on the driver for analysis.

Which technique should be used?

Options:

A.

Use an RDD action like reduce() to compute the maximum time

B.

Use an accumulator to record the maximum time on the driver

C.

Broadcast a variable to share the maximum time among workers

D.

Configure the Spark UI to automatically collect maximum times

Discussion
Addison
Want to tell everybody through this platform that I passed my exam with excellent score. All credit goes to Cramkey Exam Dumps.
Libby Sep 5, 2025
That's good to know. I might check it out for my next IT certification exam. Thanks for the info.
Peyton
Hey guys. Guess what? I passed my exam. Thanks a lot Cramkey, your provided information was relevant and reliable.
Coby Sep 7, 2025
Thanks for sharing your experience. I think I'll give Cramkey a try for my next exam.
Reeva
Wow what a success I achieved today. Thank you so much Cramkey for amazing Dumps. All students must try it.
Amari Sep 14, 2025
Wow, that's impressive. I'll definitely keep Cramkey in mind for my next exam.
Ava-Rose
Yes! Cramkey Dumps are amazing I passed my exam…Same these questions were in exam asked.
Ismail Sep 3, 2025
Wow, that sounds really helpful. Thanks, I would definitely consider these dumps for my certification exam.
Page: 3 / 9

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 PDF + Testing Engine

$57.75  $164.99