Month End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by zaviyar

Page: 5 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: zaviyar
Question 20

Which of the following code blocks uses a schema fileSchema to read a parquet file at location filePath into a DataFrame?

Options:

A.

spark.read.schema(fileSchema).format("parquet").load(filePath)

B.

spark.read.schema("fileSchema").format("parquet").load(filePath)

C.

spark.read().schema(fileSchema).parquet(filePath)

D.

spark.read().schema(fileSchema).format(parquet).load(filePath)

E.

spark.read.schema(fileSchema).open(filePath)

Discussion
Question 21

The code block shown below should add a column itemNameBetweenSeparators to DataFrame itemsDf. The column should contain arrays of maximum 4 strings. The arrays should be composed of

the values in column itemsDf which are separated at - or whitespace characters. Choose the answer that correctly fills the blanks in the code block to accomplish this.

Sample of DataFrame itemsDf:

1.+------+----------------------------------+-------------------+

2.|itemId|itemName |supplier |

3.+------+----------------------------------+-------------------+

4.|1 |Thick Coat for Walking in the Snow|Sports Company Inc.|

5.|2 |Elegant Outdoors Summer Dress |YetiX |

6.|3 |Outdoors Backpack |Sports Company Inc.|

7.+------+----------------------------------+-------------------+

Code block:

itemsDf.__1__(__2__, __3__(__4__, "[\s\-]", __5__))

Options:

A.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

(Correct)

B.

1. withColumnRenamed

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

C.

1. withColumnRenamed

2. "itemName"

3. split

4. "itemNameBetweenSeparators"

5. 4

D.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 5

E.

1. withColumn

2. itemNameBetweenSeparators

3. str_split

4. "itemName"

5. 5

Discussion
Faye
Yayyyy. I passed my exam. I think all students give these dumps a try.
Emmeline Sep 12, 2024
Definitely! I have no doubt new students will find them to be just as helpful as I did.
Ava-Rose
Yes! Cramkey Dumps are amazing I passed my exam…Same these questions were in exam asked.
Ismail Sep 18, 2024
Wow, that sounds really helpful. Thanks, I would definitely consider these dumps for my certification exam.
Ernest
That's amazing. I think I'm going to give Cramkey Dumps a try for my next exam. Thanks for telling me about them! CramKey admin please share more questions……You guys are amazing.
Nate Sep 15, 2024
I failed last week, I never know this site , but amazed to see all these questions were in my exam week before. I feel bad now, why I didn’t bother this site. Thanks Cramkey, Excellent Job.
Georgina
I used Cramkey Dumps to prepare for my recent exam and I have to say, they were a huge help.
Corey Oct 2, 2024
Really? How did they help you? I know these are the same questions appears in exam. I will give my try. But tell me if they also help in some training?
Miriam
Highly recommended Dumps. 100% authentic and reliable. Passed my exam with wonderful score.
Milan Sep 24, 2024
I see. Thanks for the information. I'll definitely keep Cramkey in mind for my next exam.
Question 22

In which order should the code blocks shown below be run in order to create a DataFrame that shows the mean of column predError of DataFrame transactionsDf per column storeId and productId,

where productId should be either 2 or 3 and the returned DataFrame should be sorted in ascending order by column storeId, leaving out any nulls in that column?

DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.| 4| null| null| 3| 2|null|

8.| 5| null| null| null| 2|null|

9.| 6| 3| 2| 25| 2|null|

10.+-------------+---------+-----+-------+---------+----+

1. .mean("predError")

2. .groupBy("storeId")

3. .orderBy("storeId")

4. transactionsDf.filter(transactionsDf.storeId.isNotNull())

5. .pivot("productId", [2, 3])

Options:

A.

4, 5, 2, 3, 1

B.

4, 2, 1

C.

4, 1, 5, 2, 3

D.

4, 2, 5, 1, 3

E.

4, 3, 2, 5, 1

Discussion
Question 23

The code block displayed below contains an error. The code block is intended to return all columns of DataFrame transactionsDf except for columns predError, productId, and value. Find the error.

Excerpt of DataFrame transactionsDf:

transactionsDf.select(~col("predError"), ~col("productId"), ~col("value"))

Options:

A.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value wrapped in the col operator so they

should be expressed like drop(col(predError), col(productId), col(value)).

B.

The select operator should be replaced with the deselect operator.

C.

The column names in the select operator should not be strings and wrapped in the col operator, so they should be expressed like select(~col(predError), ~col(productId), ~col(value)).

D.

The select operator should be replaced by the drop operator.

E.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value as strings.

(Correct)

Discussion
Page: 5 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$57.75  $164.99