Big Black Friday Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by zaviyar

Page: 5 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: zaviyar
Question 20

Which of the following code blocks uses a schema fileSchema to read a parquet file at location filePath into a DataFrame?

Options:

A.

spark.read.schema(fileSchema).format("parquet").load(filePath)

B.

spark.read.schema("fileSchema").format("parquet").load(filePath)

C.

spark.read().schema(fileSchema).parquet(filePath)

D.

spark.read().schema(fileSchema).format(parquet).load(filePath)

E.

spark.read.schema(fileSchema).open(filePath)

Discussion
Question 21

The code block shown below should add a column itemNameBetweenSeparators to DataFrame itemsDf. The column should contain arrays of maximum 4 strings. The arrays should be composed of

the values in column itemsDf which are separated at - or whitespace characters. Choose the answer that correctly fills the blanks in the code block to accomplish this.

Sample of DataFrame itemsDf:

1.+------+----------------------------------+-------------------+

2.|itemId|itemName |supplier |

3.+------+----------------------------------+-------------------+

4.|1 |Thick Coat for Walking in the Snow|Sports Company Inc.|

5.|2 |Elegant Outdoors Summer Dress |YetiX |

6.|3 |Outdoors Backpack |Sports Company Inc.|

7.+------+----------------------------------+-------------------+

Code block:

itemsDf.__1__(__2__, __3__(__4__, "[\s\-]", __5__))

Options:

A.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

(Correct)

B.

1. withColumnRenamed

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 4

C.

1. withColumnRenamed

2. "itemName"

3. split

4. "itemNameBetweenSeparators"

5. 4

D.

1. withColumn

2. "itemNameBetweenSeparators"

3. split

4. "itemName"

5. 5

E.

1. withColumn

2. itemNameBetweenSeparators

3. str_split

4. "itemName"

5. 5

Discussion
Question 22

In which order should the code blocks shown below be run in order to create a DataFrame that shows the mean of column predError of DataFrame transactionsDf per column storeId and productId,

where productId should be either 2 or 3 and the returned DataFrame should be sorted in ascending order by column storeId, leaving out any nulls in that column?

DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.| 4| null| null| 3| 2|null|

8.| 5| null| null| null| 2|null|

9.| 6| 3| 2| 25| 2|null|

10.+-------------+---------+-----+-------+---------+----+

1. .mean("predError")

2. .groupBy("storeId")

3. .orderBy("storeId")

4. transactionsDf.filter(transactionsDf.storeId.isNotNull())

5. .pivot("productId", [2, 3])

Options:

A.

4, 5, 2, 3, 1

B.

4, 2, 1

C.

4, 1, 5, 2, 3

D.

4, 2, 5, 1, 3

E.

4, 3, 2, 5, 1

Discussion
Question 23

The code block displayed below contains an error. The code block is intended to return all columns of DataFrame transactionsDf except for columns predError, productId, and value. Find the error.

Excerpt of DataFrame transactionsDf:

transactionsDf.select(~col("predError"), ~col("productId"), ~col("value"))

Options:

A.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value wrapped in the col operator so they

should be expressed like drop(col(predError), col(productId), col(value)).

B.

The select operator should be replaced with the deselect operator.

C.

The column names in the select operator should not be strings and wrapped in the col operator, so they should be expressed like select(~col(predError), ~col(productId), ~col(value)).

D.

The select operator should be replaced by the drop operator.

E.

The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value as strings.

(Correct)

Discussion
Neve
Will I be able to achieve success after using these dumps?
Rohan Oct 9, 2025
Absolutely. It's a great way to increase your chances of success.
Josie
I just passed my certification exam using their dumps and I must say, I was thoroughly impressed.
Fatimah Oct 15, 2025
You’re right. The dumps were authentic and covered all the important topics. I felt confident going into the exam and it paid off.
Aryan
Absolutely rocked! They are an excellent investment for anyone who wants to pass the exam on the first try. They save you time and effort by providing a comprehensive overview of the exam content, and they give you a competitive edge by giving you access to the latest information. So, I definitely recommend them to new students.
Jessie Oct 3, 2025
did you use PDF or Engine? Which one is most useful?
Anaya
I found so many of the same questions on the real exam that I had already seen in the Cramkey Dumps. Thank you so much for making exam so easy for me. I passed it successfully!!!
Nina Oct 3, 2025
It's true! I felt so much more confident going into the exam because I had already seen and understood the questions.
Page: 5 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$57.75  $164.99