Month End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Databricks Updated Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Questions and Answers by renesmae

Page: 4 / 6

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam Overview :

Exam Name: Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Exam Code: Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Dumps
Vendor: Databricks Certification: Databricks Certification
Questions: 180 Q&A's Shared By: renesmae
Question 16

The code block displayed below contains an error. The code block should combine data from DataFrames itemsDf and transactionsDf, showing all rows of DataFrame itemsDf that have a matching

value in column itemId with a value in column transactionsId of DataFrame transactionsDf. Find the error.

Code block:

itemsDf.join(itemsDf.itemId==transactionsDf.transactionId)

Options:

A.

The join statement is incomplete.

B.

The union method should be used instead of join.

C.

The join method is inappropriate.

D.

The merge method should be used instead of join.

E.

The join expression is malformed.

Discussion
Question 17

Which of the following code blocks performs a join in which the small DataFrame transactionsDf is sent to all executors where it is joined with DataFrame itemsDf on columns storeId and itemId,

respectively?

Options:

A.

itemsDf.join(transactionsDf, itemsDf.itemId == transactionsDf.storeId, "right_outer")

B.

itemsDf.join(transactionsDf, itemsDf.itemId == transactionsDf.storeId, "broadcast")

C.

itemsDf.merge(transactionsDf, "itemsDf.itemId == transactionsDf.storeId", "broadcast")

D.

itemsDf.join(broadcast(transactionsDf), itemsDf.itemId == transactionsDf.storeId)

E.

itemsDf.join(transactionsDf, broadcast(itemsDf.itemId == transactionsDf.storeId))

Discussion
Anya
I must say they're considered the best dumps available and the questions are very similar to what you'll see in the actual exam. Recommended!!!
Cassius Nov 2, 2024
Yes, they offer a 100% success guarantee. And many students who have used them have reported passing their exams with flying colors.
Osian
Dumps are fantastic! I recently passed my certification exam using these dumps and I must say, they are 100% valid.
Azaan Aug 8, 2024
They are incredibly accurate and valid. I felt confident going into my exam because the dumps covered all the important topics and the questions were very similar to what I saw on the actual exam. The team of experts behind Cramkey Dumps make sure the information is relevant and up-to-date.
Aryan
Absolutely rocked! They are an excellent investment for anyone who wants to pass the exam on the first try. They save you time and effort by providing a comprehensive overview of the exam content, and they give you a competitive edge by giving you access to the latest information. So, I definitely recommend them to new students.
Jessie Sep 28, 2024
did you use PDF or Engine? Which one is most useful?
Vienna
I highly recommend them. They are offering exact questions that we need to prepare our exam.
Jensen Oct 9, 2024
That's great. I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Question 18

Which of the following code blocks selects all rows from DataFrame transactionsDf in which column productId is zero or smaller or equal to 3?

Options:

A.

transactionsDf.filter(productId==3 or productId<1)

B.

transactionsDf.filter((col("productId")==3) or (col("productId")<1))

C.

transactionsDf.filter(col("productId")==3 | col("productId")<1)

D.

transactionsDf.where("productId"=3).or("productId"<1))

E.

transactionsDf.filter((col("productId")==3) | (col("productId")<1))

Discussion
Question 19

Which of the following code blocks returns a DataFrame that is an inner join of DataFrame itemsDf and DataFrame transactionsDf, on columns itemId and productId, respectively and in which every

itemId just appears once?

Options:

A.

itemsDf.join(transactionsDf, "itemsDf.itemId==transactionsDf.productId").distinct("itemId")

B.

itemsDf.join(transactionsDf, itemsDf.itemId==transactionsDf.productId).dropDuplicates(["itemId"])

C.

itemsDf.join(transactionsDf, itemsDf.itemId==transactionsDf.productId).dropDuplicates("itemId")

D.

itemsDf.join(transactionsDf, itemsDf.itemId==transactionsDf.productId, how="inner").distinct(["itemId"])

E.

itemsDf.join(transactionsDf, "itemsDf.itemId==transactionsDf.productId", how="inner").dropDuplicates(["itemId"])

Discussion
Page: 4 / 6

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
PDF

$36.75  $104.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Testing Engine

$43.75  $124.99

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 PDF + Testing Engine

$57.75  $164.99