Month End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Page: 1 / 21

Machine Learning Engineer Google Professional Machine Learning Engineer

Google Professional Machine Learning Engineer

Last Update Apr 29, 2025
Total Questions : 285

To help you prepare for the Professional-Machine-Learning-Engineer Google exam, we are offering free Professional-Machine-Learning-Engineer Google exam questions. All you need to do is sign up, provide your details, and prepare with the free Professional-Machine-Learning-Engineer practice questions. Once you have done that, you will have access to the entire pool of Google Professional Machine Learning Engineer Professional-Machine-Learning-Engineer test questions which will help you better prepare for the exam. Additionally, you can also find a range of Google Professional Machine Learning Engineer resources online to help you better understand the topics covered on the exam, such as Google Professional Machine Learning Engineer Professional-Machine-Learning-Engineer video tutorials, blogs, study guides, and more. Additionally, you can also practice with realistic Google Professional-Machine-Learning-Engineer exam simulations and get feedback on your progress. Finally, you can also share your progress with friends and family and get encouragement and support from them.

Questions 2

You have deployed multiple versions of an image classification model on Al Platform. You want to monitor the performance of the model versions overtime. How should you perform this comparison?

Options:

A.  

Compare the loss performance for each model on a held-out dataset.

B.  

Compare the loss performance for each model on the validation data

C.  

Compare the receiver operating characteristic (ROC) curve for each model using the What-lf Tool

D.  

Compare the mean average precision across the models using the Continuous Evaluation feature

Discussion 0
Questions 3

You are an ML engineer on an agricultural research team working on a crop disease detection tool to detect leaf rust spots in images of crops to determine the presence of a disease. These spots, which can vary in shape and size, are correlated to the severity of the disease. You want to develop a solution that predicts the presence and severity of the disease with high accuracy. What should you do?

Options:

A.  

Create an object detection model that can localize the rust spots.

B.  

Develop an image segmentation ML model to locate the boundaries of the rust spots.

C.  

Develop a template matching algorithm using traditional computer vision libraries.

D.  

Develop an image classification ML model to predict the presence of the disease.

Discussion 0
Questions 4

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?

Options:

A.  

1. HTTP requests are sent by the sensors to your ML model, which is deployed as a microservice and exposes a REST API for prediction

2. Your application queries a Vertex AI endpoint where you deployed your model.

3. Responses are received by the caller application as soon as the model produces the prediction.

B.  

1. Events are sent by the sensors to Pub/Sub, consumed in real time, and processed by a Dataflow stream processing pipeline.

2. The pipeline invokes the model for prediction and sends the predictions to another Pub/Sub topic.

3. Pub/Sub messages containing predictions are then consumed by a downstream system for monitoring.

C.  

1. Export your data to Cloud Storage using Dataflow.

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into Cloud SQL.

D.  

1. Export the data to Cloud Storage using the BigQuery command-line tool

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into BigQuery.

Discussion 0
Cody
I used Cramkey Dumps to prepare and a lot of the questions on the exam were exactly what I found in their study materials.
Eric Sep 13, 2024
Really? That's great to hear! I used Cramkey Dumps too and I had the same experience. The questions were almost identical.
Lennie
I passed my exam and achieved wonderful score, I highly recommend it.
Emelia Oct 2, 2024
I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Ari
Can anyone explain what are these exam dumps and how are they?
Ocean Oct 16, 2024
They're exam preparation materials that are designed to help you prepare for various certification exams. They provide you with up-to-date and accurate information to help you pass your exams.
Ivan
I tried these dumps for my recent certification exam and I found it pretty helpful.
Elis Sep 17, 2024
Agree!!! The questions in the dumps were quite similar to what came up in the actual exam. It gave me a good idea of the types of questions to expect and helped me revise efficiently.
Sam
Can I get help from these dumps and their support team for preparing my exam?
Audrey Aug 29, 2024
Definitely, you won't regret it. They've helped so many people pass their exams and I'm sure they'll help you too. Good luck with your studies!
Questions 5

You have a demand forecasting pipeline in production that uses Dataflow to preprocess raw data prior to model training and prediction. During preprocessing, you employ Z-score normalization on data stored in BigQuery and write it back to BigQuery. New training data is added every week. You want to make the process more efficient by minimizing computation time and manual intervention. What should you do?

Options:

A.  

Normalize the data using Google Kubernetes Engine

B.  

Translate the normalization algorithm into SQL for use with BigQuery

C.  

Use the normalizer_fn argument in TensorFlow's Feature Column API

D.  

Normalize the data with Apache Spark using the Dataproc connector for BigQuery

Discussion 0
Title
Questions
Posted

Professional-Machine-Learning-Engineer
PDF

$36.75  $104.99

Professional-Machine-Learning-Engineer Testing Engine

$43.75  $124.99

Professional-Machine-Learning-Engineer PDF + Testing Engine

$57.75  $164.99