Summer Special Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: big60

Google Updated Professional-Machine-Learning-Engineer Exam Questions and Answers by montgomery

Page: 11 / 21

Google Professional-Machine-Learning-Engineer Exam Overview :

Exam Name: Google Professional Machine Learning Engineer
Exam Code: Professional-Machine-Learning-Engineer Dumps
Vendor: Google Certification: Machine Learning Engineer
Questions: 285 Q&A's Shared By: montgomery
Question 44

You work for an advertising company and want to understand the effectiveness of your company's latest advertising campaign. You have streamed 500 MB of campaign data into BigQuery. You want to query the table, and then manipulate the results of that query with a pandas dataframe in an Al Platform notebook. What should you do?

Options:

A.

Use Al Platform Notebooks' BigQuery cell magic to query the data, and ingest the results as a pandas dataframe

B.

Export your table as a CSV file from BigQuery to Google Drive, and use the Google Drive API to ingest the file into your notebook instance

C.

Download your table from BigQuery as a local CSV file, and upload it to your Al Platform notebook instance Use pandas. read_csv to ingest the file as a pandas dataframe

D.

From a bash cell in your Al Platform notebook, use the bq extract command to export the table as a CSV file to Cloud Storage, and then use gsutii cp to copy the data into the notebook Use pandas. read_csv to ingest the file as a pandas dataframe

Discussion
Question 45

You are developing a recommendation engine for an online clothing store. The historical customer transaction data is stored in BigQuery and Cloud Storage. You need to perform exploratory data analysis (EDA), preprocessing and model training. You plan to rerun these EDA, preprocessing, and training steps as you experiment with different types of algorithms. You want to minimize the cost and development effort of running these steps as you experiment. How should you configure the environment?

Options:

A.

Create a Vertex Al Workbench user-managed notebook using the default VM instance, and use the %%bigquery magic commands in Jupyter to query the tables.

B.

Create a Vertex Al Workbench managed notebook to browse and query the tables directly from the JupyterLab interface.

C.

Create a Vertex Al Workbench user-managed notebook on a Dataproc Hub. and use the %%bigquery magic commands in Jupyter to query the tables.

D.

Create a Vertex Al Workbench managed notebook on a Dataproc cluster, and use the spark-bigquery-connector to access the tables.

Discussion
Ilyas
Definitely. I felt much more confident and prepared because of the Cramkey Dumps. I was able to answer most of the questions with ease and I think that helped me to score well on the exam.
Saoirse Aug 17, 2025
That's amazing. I'm glad you found something that worked for you. Maybe I should try them out for my next exam.
Vienna
I highly recommend them. They are offering exact questions that we need to prepare our exam.
Jensen Aug 17, 2025
That's great. I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Robin
Cramkey is highly recommended.
Jonah Aug 5, 2025
Definitely. If you're looking for a reliable and effective study resource, look no further than Cramkey Dumps. They're simply wonderful!
Ivan
I tried these dumps for my recent certification exam and I found it pretty helpful.
Elis Aug 10, 2025
Agree!!! The questions in the dumps were quite similar to what came up in the actual exam. It gave me a good idea of the types of questions to expect and helped me revise efficiently.
Annabel
I recently used them for my exam and I passed it with excellent score. I am impressed.
Amirah Aug 9, 2025
I passed too. The questions I saw in the actual exam were exactly the same as the ones in the Cramkey Dumps. I was able to answer the questions confidently because I had already seen and studied them.
Question 46

You need to train a ControlNet model with Stable Diffusion XL for an image editing use case. You want to train this model as quickly as possible. Which hardware configuration should you choose to train your model?

Options:

A.

Configure one a2-highgpu-1g instance with an NVIDIA A100 GPU with 80 GB of RAM. Use float32 precision during model training.

B.

Configure one a2-highgpu-1g instance with an NVIDIA A100 GPU with 80 GB of RAM. Use bfloat16 quantization during model training.

C.

Configure four n1-standard-16 instances, each with one NVIDIA Tesla T4 GPU with 16 GB of RAM. Use float32 precision during model training.

D.

Configure four n1-standard-16 instances, each with one NVIDIA Tesla T4 GPU with 16 GB of RAM. Use float16 quantization during model training.

Discussion
Question 47

You work on a team that builds state-of-the-art deep learning models by using the TensorFlow framework. Your team runs multiple ML experiments each week which makes it difficult to track the experiment runs. You want a simple approach to effectively track, visualize and debug ML experiment runs on Google Cloud while minimizing any overhead code. How should you proceed?

Options:

A.

Set up Vertex Al Experiments to track metrics and parameters Configure Vertex Al TensorBoard for visualization.

B.

Set up a Cloud Function to write and save metrics files to a Cloud Storage Bucket Configure a Google Cloud VM to host TensorBoard locally for visualization.

C.

Set up a Vertex Al Workbench notebook instance Use the instance to save metrics data in a Cloud Storage bucket and to host TensorBoard locally for visualization.

D.

Set up a Cloud Function to write and save metrics files to a BigQuery table. Configure a Google Cloud VM to host TensorBoard locally for visualization.

Discussion
Page: 11 / 21
Title
Questions
Posted

Professional-Machine-Learning-Engineer
PDF

$42  $104.99

Professional-Machine-Learning-Engineer Testing Engine

$50  $124.99

Professional-Machine-Learning-Engineer PDF + Testing Engine

$66  $164.99