Weekend Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Google Updated Professional-Machine-Learning-Engineer Exam Questions and Answers by saint

Page: 9 / 21

Google Professional-Machine-Learning-Engineer Exam Overview :

Exam Name: Google Professional Machine Learning Engineer
Exam Code: Professional-Machine-Learning-Engineer Dumps
Vendor: Google Certification: Machine Learning Engineer
Questions: 285 Q&A's Shared By: saint
Question 36

Your data science team has requested a system that supports scheduled model retraining, Docker containers, and a service that supports autoscaling and monitoring for online prediction requests. Which platform components should you choose for this system?

Options:

A.

Vertex AI Pipelines and App Engine

B.

Vertex AI Pipelines, Vertex AI Prediction, and Vertex AI Model Monitoring

C.

Cloud Composer, BigQuery ML, and Vertex AI Prediction

D.

Cloud Composer, Vertex AI Training with custom containers, and App Engine

Discussion
Question 37

You work for a credit card company and have been asked to create a custom fraud detection model based on historical data using AutoML Tables. You need to prioritize detection of fraudulent transactions while minimizing false positives. Which optimization objective should you use when training the model?

Options:

A.

An optimization objective that minimizes Log loss

B.

An optimization objective that maximizes the Precision at a Recall value of 0.50

C.

An optimization objective that maximizes the area under the precision-recall curve (AUC PR) value

D.

An optimization objective that maximizes the area under the receiver operating characteristic curve (AUC ROC) value

Discussion
Question 38

You have a custom job that runs on Vertex Al on a weekly basis The job is Implemented using a proprietary ML workflow that produces the datasets. models, and custom artifacts, and sends them to a Cloud Storage bucket Many different versions of the datasets and models were created Due to compliance requirements, your company needs to track which model was used for making a particular prediction, and needs access to the artifacts for each model. How should you configure your workflows to meet these requirement?

Options:

A.

Configure a TensorFlow Extended (TFX) ML Metadata database, and use the ML Metadata API.

B.

Create a Vertex Al experiment, and enable autologging inside the custom job

C.

Use the Vertex Al Metadata API inside the custom Job to create context, execution, and artifacts for each model, and use events to link them together.

D.

Register each model in Vertex Al Model Registry, and use model labels to store the related dataset and model information.

Discussion
Peyton
Hey guys. Guess what? I passed my exam. Thanks a lot Cramkey, your provided information was relevant and reliable.
Coby Jul 13, 2025
Thanks for sharing your experience. I think I'll give Cramkey a try for my next exam.
Syeda
I passed, Thank you Cramkey for your precious Dumps.
Stella Jul 18, 2025
That's great. I think I'll give Cramkey Dumps a try.
Aliza
I used these dumps for my recent certification exam and I can say with certainty that they're absolutely valid dumps. The questions were very similar to what came up in the actual exam.
Jakub Jul 29, 2025
That's great to hear. I am going to try them soon.
Madeleine
Passed my exam with my dream score…. Guys do give these dumps a try. They are authentic.
Ziggy Jul 9, 2025
That's really impressive. I think I might give Cramkey Dumps a try for my next certification exam.
Amy
I passed my exam and found your dumps 100% relevant to the actual exam.
Lacey Jul 21, 2025
Yeah, definitely. I experienced the same.
Question 39

You work for a gaming company that develops massively multiplayer online (MMO) games. You built a TensorFlow model that predicts whether players will make in-app purchases of more than $10 in the next two weeks. The model’s predictions will be used to adapt each user’s game experience. User data is stored in BigQuery. How should you serve your model while optimizing cost, user experience, and ease of management?

Options:

A.

Import the model into BigQuery ML. Make predictions using batch reading data from BigQuery, and push the data to Cloud SQL

B.

Deploy the model to Vertex AI Prediction. Make predictions using batch reading data from Cloud Bigtable, and push the data to Cloud SQL.

C.

Embed the model in the mobile application. Make predictions after every in-app purchase event is published in Pub/Sub, and push the data to Cloud SQL.

D.

Embed the model in the streaming Dataflow pipeline. Make predictions after every in-app purchase event is published in Pub/Sub, and push the data to Cloud SQL.

Discussion
Page: 9 / 21
Title
Questions
Posted

Professional-Machine-Learning-Engineer
PDF

$36.75  $104.99

Professional-Machine-Learning-Engineer Testing Engine

$43.75  $124.99

Professional-Machine-Learning-Engineer PDF + Testing Engine

$57.75  $164.99