Week End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated AIP-C01 Exam Questions and Answers by indiana

Page: 5 / 6

Amazon Web Services AIP-C01 Exam Overview :

Exam Name: AWS Certified Generative AI Developer-Professional
Exam Code: AIP-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Professional
Questions: 85 Q&A's Shared By: indiana
Question 20

A media company must use Amazon Bedrock to implement a robust governance process for AI-generated content. The company needs to manage hundreds of prompt templates. Multiple teams use the templates across multiple AWS Regions to generate content. The solution must provide version control with approval workflows that include notifications for pending reviews. The solution must also provide detailed audit trails that document prompt activities and consistent prompt parameterization to enforce quality standards.

Which solution will meet these requirements?

Options:

A.

Configure Amazon Bedrock Studio prompt templates. Use Amazon CloudWatch dashboards to display prompt usage metrics. Store approval status in Amazon DynamoDB. Use AWS Lambda functions to enforce approvals.

B.

Use Amazon Bedrock Prompt Management to implement version control. Configure AWS CloudTrail for audit logging. Use AWS Identity and Access Management policies to control approval permissions. Create parameterized prompt templates by specifying variables.

C.

Use AWS Step Functions to create an approval workflow. Store prompts in Amazon S3. Use tags to implement version control. Use Amazon EventBridge to send notifications.

D.

Deploy Amazon SageMaker Canvas with prompt templates stored in Amazon S3. Use AWS CloudFormation for version control. Use AWS Config to enforce approval policies.

Discussion
Question 21

A retail company has a generative AI (GenAI) product recommendation application that uses Amazon Bedrock. The application suggests products to customers based on browsing history and demographics. The company needs to implement fairness evaluation across multiple demographic groups to detect and measure bias in recommendations between two prompt approaches. The company wants to collect and monitor fairness metrics in real time. The company must receive an alert if the fairness metrics show a discrepancy of more than 15% between demographic groups. The company must receive weekly reports that compare the performance of the two prompt approaches.

Which solution will meet these requirements with the LEAST custom development effort?

Options:

A.

Configure an Amazon CloudWatch dashboard to display default metrics from Amazon Bedrock API calls. Create custom metrics based on model outputs. Set up Amazon EventBridge rules to invoke AWS Lambda functions that perform post-processing analysis on model responses and publish custom fairness metrics.

B.

Create the two prompt variants in Amazon Bedrock Prompt Management. Use Amazon Bedrock Flows to deploy the prompt variants with defined traffic allocation. Configure Amazon Bedrock guardrails to monitor demographic fairness. Set up Amazon CloudWatch alarms on the GuardrailContentSource dimension by using InvocationsIntervened metrics to detect recommendation discrepancy threshold violations.

C.

Set up Amazon SageMaker Clarify to analyze model outputs. Publish fairness metrics to Amazon CloudWatch. Create CloudWatch composite alarms that combine SageMaker Clarify bias metrics with Amazon Bedrock latency metrics.

D.

Create an Amazon Bedrock model evaluation job to compare fairness between the two prompt variants. Enable model invocation logging in Amazon CloudWatch. Set up CloudWatch alarms for InvocationsIntervened metrics with a dimension for each demographic group.

Discussion
Nadia
Why these dumps are important? Can I pass my exam without these dumps?
Julian Jan 19, 2026
The questions in the Cramkey dumps are explained in detail and there are also study notes and reference materials provided. This made it easier for me to understand the concepts and retain the information better.
Reeva
Wow what a success I achieved today. Thank you so much Cramkey for amazing Dumps. All students must try it.
Amari Jan 6, 2026
Wow, that's impressive. I'll definitely keep Cramkey in mind for my next exam.
Melody
My experience with Cramkey was great! I was surprised to see that many of the questions in my exam appeared in the Cramkey dumps.
Colby Jan 3, 2026
Yes, In fact, I got a score of above 85%. And I attribute a lot of my success to Cramkey's dumps.
Syeda
I passed, Thank you Cramkey for your precious Dumps.
Stella Jan 10, 2026
That's great. I think I'll give Cramkey Dumps a try.
Question 22

A bank is developing a generative AI (GenAI)-powered AI assistant that uses Amazon Bedrock to assist the bank’s website users with account inquiries and financial guidance. The bank must ensure that the AI assistant does not reveal any personally identifiable information (PII) in customer interactions.

The AI assistant must not send PII in prompts to the GenAI model. The AI assistant must not respond to customer requests to provide investment advice. The bank must collect audit logs of all customer interactions, including any images or documents that are transmitted during customer interactions.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use Amazon Macie to detect and redact PII in user inputs and in the model responses. Apply prompt engineering techniques to force the model to avoid investment advice topics. Use AWS CloudTrail to capture conversation logs.

B.

Use an AWS Lambda function and Amazon Comprehend to detect and redact PII. Use Amazon Comprehend topic modeling to prevent the AI assistant from discussing investment advice topics. Set up custom metrics in Amazon CloudWatch to capture customer conversations.

C.

Configure Amazon Bedrock guardrails to apply a sensitive information policy to detect and filter PII. Set up a topic policy to ensure that the AI assistant avoids investment advice topics. Use the Converse API to log model invocations. Enable delivery and image logging to Amazon S3.

D.

Use regex controls to match patterns for PII. Apply prompt engineering techniques to avoid returning PII or investment advice topics to customers. Enable model invocation logging, delivery logging, and image logging to Amazon S3.

Discussion
Question 23

A specialty coffee company has a mobile app that generates personalized coffee roast profiles by usingAmazon Bedrockwith a three-stage prompt chain. The prompt chain converts user inputs into structured metadata, retrieves relevant logs for coffee roasts, and generates a personalized roast recommendation for each customer.

Users in multiple AWS Regions report inconsistent roast recommendations for identical inputs, slow inference during the retrieval step, and unsafe recommendations such as brewing at excessively high temperatures. The company must improve the stability of outputs for repeated inputs. The company must also improve app performance and the safety of the app’s outputs. The updated solution must ensure 99.5% output consistency for identical inputs and achieve inference latency of less than 1 second. The solution must also block unsafe or hallucinated recommendations by using validated safety controls.

Which solution will meet these requirements?

Options:

A.

Deploy Amazon Bedrock with provisioned throughput to stabilize inference latency. Apply Amazon Bedrock guardrails with semantic denial rules to block unsafe outputs. UseAmazon Bedrock Prompt Managementto manage prompts by using approval workflows.

B.

UseAmazon Bedrock Agentsto manage chaining. Log model inputs and outputs toAmazon CloudWatch Logs. Use logs from CloudWatch to perform A/B testing for prompt versions.

C.

Cache prompt results inAmazon ElastiCache. Use AWS Lambda functions to pre-process metadata and to trace end-to-end latency. UseAWS X-Rayto identify and remediate performance bottlenecks.

D.

UseAmazon Kendrato improve roast log retrieval accuracy. Store normalized prompt metadata within Amazon DynamoDB. Use AWS Step Functions to orchestrate multi-step prompts.

Discussion
Page: 5 / 6

AIP-C01
PDF

$36.75  $104.99

AIP-C01 Testing Engine

$43.75  $124.99

AIP-C01 PDF + Testing Engine

$57.75  $164.99