Week End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated AIP-C01 Exam Questions and Answers by addison

Page: 2 / 6

Amazon Web Services AIP-C01 Exam Overview :

Exam Name: AWS Certified Generative AI Developer-Professional
Exam Code: AIP-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Professional
Questions: 85 Q&A's Shared By: addison
Question 8

A company has set up Amazon Q Developer Pro licenses for all developers at the company. The company maintains a list of approved resources that developers must use when developing applications. The approved resources include internal libraries, proprietary algorithmic techniques, and sample code with approved styling.

A new team of developers is using Amazon Q Developer to develop a new Java-based application. The company must ensure that the new developer team uses the company’s approved resources. The company does not want to make project-level modifications.

Which solution will meet these requirements?

Options:

A.

Create a Git repository that contains all of the approved internal libraries, algorithms, and code samples. Include this Git repository in the application project locally as part of the workspace. Ensure that the developers use the workspace context to retrieve suggestions from the Git repository.

B.

In the project root folder, create a folder named amazonq/rules. Add the approved internal libraries, algorithms, and code samples to the folder.

C.

Create a folder in the application project named rules. Store the guidelines and code in the folder for Amazon Q Developer to reference for code suggestions.

D.

Create an Amazon Q Developer customization that includes the approved data sources. Ensure that the developers use the customization to develop the application.

Discussion
Reeva
Wow what a success I achieved today. Thank you so much Cramkey for amazing Dumps. All students must try it.
Amari Jan 6, 2026
Wow, that's impressive. I'll definitely keep Cramkey in mind for my next exam.
Elise
I've heard that Cramkey is one of the best websites for exam dumps. They have a high passing rate and the questions are always up-to-date. Is it true?
Cian Jan 9, 2026
Definitely. The dumps are constantly updated to reflect the latest changes in the certification exams. And I also appreciate how they provide explanations for the answers, so I could understand the reasoning behind each question.
Hendrix
Great website with Great Exam Dumps. Just passed my exam today.
Luka Jan 14, 2026
Absolutely. Cramkey Dumps only provides the latest and most updated exam questions and answers.
Lennie
I passed my exam and achieved wonderful score, I highly recommend it.
Emelia Jan 3, 2026
I think I'll give Cramkey a try next time I take a certification exam. Thanks for the recommendation!
Norah
Cramkey is highly recommended.
Zayan Jan 1, 2026
Definitely. If you're looking for a reliable and effective study resource, look no further than Cramkey Dumps. They're simply wonderful!
Question 9

An enterprise application uses anAmazon Bedrockfoundation model (FM) to process and analyze 50 to 200 pages of technical documents. Users are experiencing inconsistent responses and receiving truncated outputs when processing documents that exceed the FM's context window limits.

Which solution will resolve this problem?

Options:

A.

Configure fixed-size chunking at 4,000 tokens for each chunk with 20% overlap. Use application-level logic to link multiple chunks sequentially until the FM's maximum context window of 200,000 tokens is reached before making inference calls.

B.

Use hierarchical chunking with parent chunks of 8,000 tokens and child chunks of 2,000 tokens. UseAmazon Bedrock Knowledge Basesbuilt-in retrieval to automatically select relevant parent chunks based on query context. Configure overlap tokens to maintain semantic continuity.

C.

Use semantic chunking with a breakpoint percentile threshold of 95% and a buffer size of 3 sentences. Use theRetrieveAndGenerateAPI to dynamically select the most relevant chunks based on embedding similarity scores.

D.

Create a pre-processingAWS Lambdafunction that analyzes document token count by using the FM's tokenizer. Configure the Lambda function to split documents into equal segments that fit within 80% of the context window. Configure the Lambda function to process each segment independently before aggregating the results.

Discussion
Question 10

A company is using AWS Lambda and REST APIs to build a reasoning agent to automate support workflows. The system must preserve memory across interactions, share relevant agent state, and support event-driven invocation and synchronous invocation. The system must also enforce access control and session-based permissions.

Which combination of steps provides the MOST scalable solution? (Select TWO.)

Options:

A.

Use Amazon Bedrock AgentCore to manage memory and session-aware reasoning. Deploy the agent with built-in identity support, event handling, and observability.

B.

Register the Lambda functions and REST APIs as actions by using Amazon API Gateway and Amazon EventBridge. Enable Amazon Bedrock AgentCore to invoke the Lambda functions and REST APIs without custom orchestration code.

C.

Use Amazon Bedrock Agents for reasoning and conversation management. Use AWS Step Functions and Amazon SQS for orchestration. Store agent state in Amazon DynamoDB.

D.

Deploy the reasoning logic as a container on Amazon ECS behind API Gateway. Use Amazon Aurora to store memory and identity data.

E.

Build a custom RAG pipeline by using Amazon Kendra and Amazon Bedrock. Use AWS Lambda to orchestrate tool invocations. Store agent state in Amazon S3.

Discussion
Question 11

A financial services company is developing a customer service AI assistant application that uses a foundation model (FM) in Amazon Bedrock. The application must provide transparent responses by documenting reasoning and by citing sources that are used for Retrieval Augmented Generation (RAG). The application must capture comprehensive audit trails for all responses to users. The application must be able to serve up to 10,000 concurrent users and must respond to each customer inquiry within 2 seconds.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Enable tracing for Amazon Bedrock Agents. Configure structured prompts that direct the FM to provide evidence presentations. Integrate Amazon Bedrock Knowledge Bases with data sources to enable RAG. Configure the application to reference and cite authoritative content. Deploy the application in a Multi-AZ architecture. Use Amazon API Gateway and AWS Lambda functions to scale the application. Use Amazon CloudFront to provide low-latency deli

B.

Enable tracing for Amazon Bedrock agents. Integrate a custom RAG pipeline with Amazon OpenSearch Service to retrieve and cite sources. Configure structured prompts to present retrieved evidence. Deploy the application behind an Amazon API Gateway REST API. Use AWS Lambda functions and Amazon CloudFront to scale the application and to provide low latency. Store logs in Amazon S3 and use AWS CloudTrail to capture audit trails.

C.

Use Amazon CloudWatch to monitor latency and error rates. Embed model prompts directly in the application backend to cite sources. Store application interactions with users in Amazon RDS for audits.

D.

Store generated responses and supporting evidence in an Amazon S3 bucket. Enable versioning on the bucket for audits. Use AWS Glue to catalog retrieved documents. Process the retrieved documents in Amazon Athena to generate periodic compliance reports.

Discussion
Page: 2 / 6

AIP-C01
PDF

$36.75  $104.99

AIP-C01 Testing Engine

$43.75  $124.99

AIP-C01 PDF + Testing Engine

$57.75  $164.99