Week End Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: get65

Amazon Web Services Updated MLA-C01 Exam Questions and Answers by harlie

Page: 6 / 15

Amazon Web Services MLA-C01 Exam Overview :

Exam Name: AWS Certified Machine Learning Engineer - Associate
Exam Code: MLA-C01 Dumps
Vendor: Amazon Web Services Certification: AWS Certified Associate
Questions: 207 Q&A's Shared By: harlie
Question 24

An ML engineer is configuring auto scaling for an inference component of a model that runs behind an Amazon SageMaker AI endpoint. The ML engineer configures SageMaker AI auto scaling with a target tracking scaling policy set to 100 invocations per model per minute. The SageMaker AI endpoint scales appropriately during normal business hours. However, the ML engineer notices that at the start of each business day, there are zero instances available to handle requests, which causes delays in processing.

The ML engineer must ensure that the SageMaker AI endpoint can handle incoming requests at the start of each business day.

Which solution will meet this requirement?

Options:

A.

Reduce the SageMaker AI auto scaling cooldown period to the minimum supported value. Add an auto scaling lifecycle hook to scale the SageMaker AI instances.

B.

Change the target metric to CPU utilization.

C.

Modify the scaling policy target value to one.

D.

Apply a step scaling policy that scales based on an Amazon CloudWatch alarm. Apply a second CloudWatch alarm and scaling policy to scale the minimum number of instances from zero to one at the start of each business day.

Discussion
Alaya
Best Dumps among other dumps providers. I like it so much because of their authenticity.
Kaiden Jan 23, 2026
That's great. I've used other dump providers in the past and they were often outdated or had incorrect information. This time I will try it.
Sam
Can I get help from these dumps and their support team for preparing my exam?
Audrey Jan 22, 2026
Definitely, you won't regret it. They've helped so many people pass their exams and I'm sure they'll help you too. Good luck with your studies!
Neve
Will I be able to achieve success after using these dumps?
Rohan Jan 27, 2026
Absolutely. It's a great way to increase your chances of success.
Nell
Are these dumps reliable?
Ernie Jan 20, 2026
Yes, very much so. Cramkey Dumps are created by experienced and certified professionals who have gone through the exams themselves. They understand the importance of providing accurate and relevant information to help you succeed.
Osian
Dumps are fantastic! I recently passed my certification exam using these dumps and I must say, they are 100% valid.
Azaan Jan 23, 2026
They are incredibly accurate and valid. I felt confident going into my exam because the dumps covered all the important topics and the questions were very similar to what I saw on the actual exam. The team of experts behind Cramkey Dumps make sure the information is relevant and up-to-date.
Question 25

A company regularly receives new training data from a vendor of an ML model. The vendor delivers cleaned and prepared data to the company’s Amazon S3 bucket every 3–4 days.

The company has an Amazon SageMaker AI pipeline to retrain the model. An ML engineer needs to run the pipeline automatically when new data is uploaded to the S3 bucket.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Create an S3 lifecycle rule to transfer the data to the SageMaker AI training instance and initiate training.

B.

Create an AWS Lambda function that scans the S3 bucket and initiates the pipeline when new data is uploaded.

C.

Create an Amazon EventBridge rule that matches S3 upload events and configures the SageMaker pipeline as the target.

D.

Use Amazon Managed Workflows for Apache Airflow (MWAA) to orchestrate the pipeline when new data is uploaded.

Discussion
Question 26

An ML engineer is collecting data to train a classification ML model by using Amazon SageMaker AI. The target column can have two possible values: Class A or Class B. The ML engineer wants to ensure that the number of samples for both Class A and Class B are balanced, without losing any existing training data. The ML engineer must test the balance of the training data.

Which solution will meet this requirement?

Options:

A.

Use SageMaker Clarify to check for class imbalance (CI). If the value is equal to 0, then use random undersampling in SageMaker Data Wrangler to balance the classes.

B.

Use SageMaker Clarify to check for class imbalance (CI). If the value is greater than 0, then use synthetic minority oversampling technique (SMOTE) in SageMaker Data Wrangler to balance the classes.

C.

Use SageMaker JumpStart to generate a class imbalance (CI) report. If the value is greater than 0, then use random undersampling in SageMaker Studio to balance the classes.

D.

Use SageMaker JumpStart to generate a class imbalance (CI) report. If the value is equal to 0, then use synthetic minority oversampling technique (SMOTE) in SageMaker Studio to balance the classes.

Discussion
Question 27

A company is developing an ML model to forecast future values based on time series data. The dataset includes historical measurements collected at regular intervals and categorical features. The model needs to predict future values based on past patterns and trends.

Which algorithm and hyperparameters should the company use to develop the model?

Options:

A.

Use the Amazon SageMaker AI XGBoost algorithm. Set the scale_pos_weight hyperparameter to adjust for class imbalance.

B.

Use k-means clustering with k to specify the number of clusters.

C.

Use the Amazon SageMaker AI DeepAR algorithm with matching context length and prediction length hyperparameters.

D.

Use the Amazon SageMaker AI Random Cut Forest (RCF) algorithm with contamination to set the expected proportion of anomalies.

Discussion
Page: 6 / 15

MLA-C01
PDF

$36.75  $104.99

MLA-C01 Testing Engine

$43.75  $124.99

MLA-C01 PDF + Testing Engine

$57.75  $164.99